您好,欢迎来到化工原料网! [ 登录] [ 免费注册]
化工原料网
位置: 首页> 资料中心 > 行业百科
百科分类
半岛游戏平台官网入口网址
光学半岛游戏平台官网入口网址 及设备
光学加工
激光半岛bd体育手机客户端
光学成像设备
光学实验设备
半导体检测
光学检测半岛游戏平台官网入口网址
光学计量半岛游戏平台官网入口网址
光学分析半岛游戏平台官网入口网址
显微镜样品制备
电子显微镜
光学显微镜
分析半岛游戏平台官网入口网址
实验室常用设备
物性测试半岛游戏平台官网入口网址 及设备
测量/计量半岛游戏平台官网入口网址
环境监测半岛游戏平台官网入口网址
生命科学半岛游戏平台官网入口网址 /设备
行业专用半岛游戏平台官网入口网址
工业在线及过程控制半岛游戏平台官网入口网址
配件、耗材与服务
半岛电子游戏官方网站
通用试剂
检测试剂
试剂盒
细胞
基因与染色体
机械设备
通用设备
原料、中间体、气体
原料、中间体
农用化学品
分子束外延(MBE)
概述

分子束外延(Molecular Beam Epitaxy,简记为MBE)是一种新的晶体生长技术。其方法是将半导体衬底放置在超高真空腔体中,和将需要生长的单晶物质按元素的不同分别放在喷射炉中(也在腔体内)。由分别加热到相应温度的各元素喷射出的分子流能在上述衬底上生长出极薄的(可薄至单原子层水平)单晶体和几种物质交替的超晶格结构。分子束外延主要研究的是不同结构或不同材料的晶体和超晶格的生长。该法生长温度低,能严格控制外延层的层厚组分和掺杂浓度,但系统复杂,生长速度慢,生长面积也受到一定限制。
分子束外延是50年代用真空蒸发技术制备半导体薄膜材料发展而来的。随着超高真空技术的发展而日趋完善,由于分子束外延技术的发展开拓了一系列崭新的超晶格器件,扩展了半导体科学的新领域,进一步说明了半导体材料的发展对半导体物理和半导体器件的影响。分子束外延的优点就是能够制备超薄层的半导体材料;外延材料表面形貌好,而且面积较大均匀性较好;可以制成不同掺杂剂或不同成份的多层结构;外延生长的温度较低,有利于提高外延层的纯度和完整性;利用各种元素的粘附系数的差别,可制成化学配比较好的化合物半导体薄膜。

特点

(1) 生长速率极慢,大约1um/小时,相当于每秒生长一个单原子层,因此有利于实现精确控制厚度、结构与成分和形成陡峭的异质结构等。实际上是一种原子级的加工技术,因此MBE特别适于生长超晶格材料。
(2) 外延生长的温度低,因此降低了界面上热膨胀引入的晶格失配效应和衬底杂质对外延层的自掺杂扩散影响。
(3) 由于生长是在超高真空中进行的,衬底表面经过处理可成为完全清洁的,在外延过程中可避免沾污,因而能生长出质量极好的外延层。在分子束外延装置中,一般还附有用以检测表面结构、成分和真空残余气体的半岛游戏平台官网入口网址 ,可以随时监控外延层的成分和结构的完整性,有利于科学研究。
(4) MBE是一个动力学过程,即将入射的中性粒子(原子或分子)一个一个地堆积在衬底上进行生长,而不是一个热力学过程,所以它可以生长按照普通热平衡生长方法难以生长的薄膜。
(5) MBE是一个超高真空的物理沉积过程,既不需要考虑中间化学反应,又不受质量传输的影响,并且利用快门可以对生长和中断进行瞬时控制。因此,膜的组分和掺杂浓度可随源的变化而迅速调整。

技术难点

分子束外延作为已经成熟的技术早已应用到了微波器件和光电器件的制作中。但由于分子束外延设备昂贵而且真空度要求很高,所以要获得超高真空以及避免蒸发器中的杂质污染需要大量的液氮,因而提高了日常维持的费用。
MBE能对半导体异质结进行选择掺杂,大大扩展了掺杂半导体所能达到的性能和现象的范围。调制掺杂技术使结构设计更灵活。但同样对与控制、平滑度、稳定性和纯度有关的晶体生长参数提出了严格的要求,如何控制晶体生长参数是应解决的技术问题之一。
MBE技术自1986年问世以来有了较大的发展,但在生长III-V族化合物超薄层时,常规MBE技术存在两个问题:
1、生长异质结时,由于大量的原子台阶,其界面呈原子级粗糙,因而导致器件的性能恶化;
2、由于生长温度高而不能形成边缘陡峭的杂质分布,导致杂质原子的再分布(尤其是p型杂质)。其关键性的问题是控制镓和砷的束流强度,否则都会影响表面的质量。这也是技术难点之一。

上一篇: 原子层沉积系统(ALD)
下一篇: 等离子体表面处理仪
Baidu
map