您好,欢迎来到半岛电竞官方网址 ! [ 登录] [ 免费注册]
半岛电竞官方网址
位置: 首页> 半岛bd体育手机客户端 库> Rapamycin(Sirolimus AY22989)
立即咨询
咨询类型:
*姓名:
*电话:
*单位:
Email:
*留言内容:
请详细说明您的需求。
*验证码:
Rapamycin(Sirolimus AY22989)
本半岛bd体育手机客户端 不向个人销售,仅用作科学研究,不用于任何人体实验及非科研性质的动物实验。
Rapamycin(Sirolimus AY22989)图片
CAS NO: 53123-88-9
规格: ≥98%
包装与价格:
包装 价格(元)
10mg 电议
25mg 电议
50mg 电议
100mg 电议
250mg 电议
500mg 电议
1g 电议
2g 电议

半岛bd体育手机客户端 介绍
理化性质和储存条件
Molecular Weight (MW) 914.18
Formula C51H79NO13
CAS No. 53123-88-9
Storage -20℃ for 3 years in powder form
-80℃ for 2 years in solvent
Solubility(In vitro) DMSO: 20 mg/mL (21.9 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility(In vivo) 2% DMSO+30% PEG 300+5% Tween 80+ddH2O: 5 mg/mL
Synonym

AY 22989; AY22989; AY-22989; NSC-2260804; RAPA; RAP; RPM; SLM; AY 22989; SILA 9268A; WY090217; WY-090217; WY 090217; C07909; D00753; Rapamune.

Chemical Name:(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34, 34a-hexadecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4] oxaazacyclohentriacontine-1,5,11,28,29 (4H,6H,31H)-pentone

SMILES Code: C[C@@H](C([C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(C[C@@H]([C@H](C)C[C@@H]1CC[C@@H](O)C(OC)C1)OC2=O)=O)=O)C[C@H](C)/C=C/C=C/C=C(C)/[C@@H](OC)C[C@H]3O[C@](C(C(N4[C@H]2CCCC4)=O)=O)(O)[C@H](C)CC3

实验参考方法

In Vitro

Kinase Assay: HEK293 cells are plated at 2-2.5×105 cells/well of a 12-well plate and serum-starved for 24 hours in DMEM. Cells are treated with increasing concentrations of Rapamycin (0.05-50 nM) for 15 minutes at 37 °C. Serum is added to a final concentration of 20% for 30 minutes at 37 °C. Cells are lysed, and cell lysates are separated by SDS-PAGE. Resolved proteins are transferred to a polyvinylidene difluoride membrane and immunoblotted with a phosphospecific primary antibody against Thr-389 of p70 S6 kinase. Data are analyzed using ImageQuant and KaleidaGr.

Cell Assay: Cells (U87-MG, T98G, and U373-MG) are exposed to various concentrations of Rapamycin for 72 hours. For the assessment of cell viability, cells are collected by trypsinization, stained with trypan blue, and the viable cells in each well are counted. For the determination of cell cycle, cells are trypsinized, fixed with 70% ethanol, and stained with propidium iodide using a flow cytometry reagent set. Samples are analyzed for DNA content using a FACScan flow cytometer and CellQuest software. For apoptosis detection, cells are stained with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique using an ApopTag apoptosis detection kit. To detect the development of acidic vesicular organelles (AVO), cells are stained with acridine orange (1 μg/mL) for 15 minutes, and examined under a fluorescence microscope. To quantify the development of AVOs, cells are stained with acridine orange (1 μg/mL) for 15 minutes, removed from the plate with trypsin-EDTA, and analyzed using the FACScan flow cytometer and CellQuest software. To analyze the autophagic process, cells are incubated for 10 minutes with 0.05 mM monodansylcadaverine at 37 °C and are then observed under a fluorescence microscope.

Rapamycin inhibits endogenous mTOR activity in HEK293 cells with IC50 of ~0.1 nM, more potently than iRap and AP21967 with IC50 of ~5 nM and ~10 nM, respectively. In Saccharomyces cerevisiae, Rapamycin treatment induces a severe G1/S cell cycle arrest and inhibition of translation initiation to levels below 20% of control. Rapamycin significantly inhibits the cell viability of T98G and U87-MG in a dose-dependent manner with IC50 of 2 nM and 1 μM, respectively, while displaying little activity against U373-MG cells with IC50 of>25 μM despite the similar extent of the inhibition of mTOR signaling. Rapamycin (100 nM) induces G1 arrest and autophagy but not apoptosis in Rapamycin-sensitive U87-MG and T98G cells by inhibiting the function of mTOR

In Vivo

Treatment with Rapamycin in vivo specifically blocks targets known to be downstream of mTOR such as the phosphorylation and activation of p70S6K and the release of inhibition of eIF4E by PHAS-1/4E-BP1, leading to complete blockage of the hypertrophic increases in plantaris muscle weight and fibre size. Short-term Rapamycin treatment, even at the lowest dose of 0.16 mg/kg, produces profound inhibition of p70S6K activity, which correlates with increased tumor cell death and necrosis of the Eker renal tumors. Rapamycin inhibits metastatic tumor growth and angiogenesis in CT-26 xenograft models by reducing the production of VEGF and blockage of VEGF-induced endothelial cell signaling. Rapamycin treatment at 4 mg/kg/day significantly reduces tumor growth of C6 xenografts, and tumor vascular permeability.

Animal model

Athymic Nu/Nu mice inoculated subcutaneously with VEGF-A-expressing C6 rat glioma cells

Formulation & Dosage

Formulated in solvent solution (0.2% carboxymethylcellulose and 0.25% Tween-80 in sterile H2O); 4 mg/kg; i.p. injection

References

Cancer Res. 2005 Apr 15;65(8):3336-46.

Baidu
map