您好,欢迎来到半岛电竞官方网址 ! [ 登录] [ 免费注册]
半岛电竞官方网址
位置: 首页> 资讯> 半岛bd体育手机客户端 技术
2480
大连化物所提出可见光照对锌铁双氧化物类芬顿催化剂反应路径的调控新策略
近日,中国科学院大连化学物理研究所能源研究技术平台穆斯堡尔谱研究组研究员王军虎团队,通过可见光照实现了对锌铁双氧化物类芬顿催化剂反应机理的有效调控,为多相催化剂在类芬顿反应中反应路径从自由基到非自由基的转变提供了新策略。各种无机阴离子或高浓度有机物对类芬顿反应中自由基基团的猝灭,限制了其在工业应用中的价值。非自由基主导的体系可有效克服上述限制,在广泛存在的水
催化剂 腐殖酸
2022.11.30
上海药物所等构建表面功能仿生型纳米药物载体
糖尿病是一种威胁人类健康的慢性代谢性疾病。目前,临床上针对Ⅰ型糖尿病及Ⅱ型糖尿病中晚期患者的主要治疗方式是频繁皮下注射胰岛素,这给患者造成了痛苦与不便,并会导致外周高胰岛素血症,从而引起低血糖、肥胖等副作用。相较而言,口服胰岛素因无痛、给药方便等特点而更易被患者接受。然而,一方面,人体胃肠道内的生理屏障限制了胰岛素的口服吸收效率;另一方面,胰岛素经口服吸收入
上海微系统所研制出集成多功能超柔性微电极阵列
中国科学院上海微系统与信息技术研究所传感技术国家重点实验室采用微纳加工技术,制备了多通道超柔性微电极阵列并集成天然丝蛋白光纤组成的多功能探针(Silk-Optrode),可实现大脑神经信号的精准调控与解析。11月8日,相关研究成果以A silk-based self-adaptive flexible opto-electro neural probe为题,
探针 丝蛋白光纤
2022.11.23
研究发现选择性激动SaClpP的新型抗生素
ClpP是原核和真核生物中高度保守的ATP依赖的丝氨酸水解酶,负责调控蛋白质稳态。生理状态下,ClpP通过与伴侣蛋白(如ClpX形成ClpXP复合体)发挥水解酪蛋白的功能。小分子激动金黄色葡萄球菌ClpP(SaClpP)异常降解关键蛋白质,是抗生素发现的新策略。由于异常激活人源ClpP (HsClpP)可引起线粒体蛋白稳态失调从而产生细胞毒性,因此,理想的靶
青岛能源所开发出稳定制氢离子传导膜的新型制备技术
与可再生能源电解水制氢技术相比,通过提纯工业副产氢获取燃料氢气是现阶段更廉价的制氢方式。金属氧化物构成的氧离子传导膜具有对氧100%的选择性,将高温水分解反应和工业副产氢燃烧反应耦合在致密氧离子传导膜的两侧,可实现低纯氢气燃烧反应,进而驱动膜另一侧水分解,直接获得不含一氧化碳的氢气,用于氢燃料电池。然而,氧离子传导膜通常暴露在含H2、CO2、H2S、H2O、
离子传导膜
2022.11.14
兰州化物所燃料电池双极板防护涂层研究取得进展
燃料电池是把燃料具有的化学能直接转换为电能的化学装置,又称电化学发电器。燃料电池具备运行中零排放、高效率等优点,是交通运输领域实现低碳排放的重要技术之一。双极板是氢燃料电池的核心部件,主要作用是收集燃料电池产生的电流、向电极供应反应气体、阻止两极间反应物质的渗透,并支撑加固燃料电池。然而,由于燃料电池的酸性工作环境,双极板易被腐蚀。因此,开发具有优良的导电性
大连化物所开发出高能量密度锰基混合单液流电池
近日,中国科学院大连化学物理研究所储能技术研究部研究员李先锋团队开发出基于Br-辅助MnO2放电的混合型液流电池,具有能量密度高、可逆性高的优势。液流电池(FBs)具有安全性高、寿命长、效率高等优势,在大规模储能领域受到广泛关注。目前,液流电池能量密度较低,进一步发展受阻。Mn2+/Mn3+具有电极电位高、溶解度高、电化学动力学良好、成本低等优势,在高能量密
液流电池
2022.11.10
生物物理所实现在亚细胞分辨率实时监测衣康酸的浓度变化
衣康酸是一种由激活巨噬细胞合成具有抗炎功能的中间代谢产物。已有研究表明,在线粒体中顺乌头酸在代谢酶IRG1的催化作用下脱羧产生衣康酸,随后衣康酸被转运至胞浆发挥免疫调节功能。此前,中国科学院生物物理研究所李新建团队报道了衣康酸能够诱导巨噬细胞溶酶体的生物合成提高机体抵御细菌入侵的天然免疫能力(Molecular Cell 2022,PMID:35662396
新固态锂金属电池3分钟充满电
科技日报讯 (实习记者张佳欣)美国哈佛大学科学家为电动汽车开发了一种新型固态锂金属电池,该电池有望实现3分钟内完全充电,并且可持续使用20年。相关论文发表在最近的《自然》杂志上。目前,初创公司Adden Energy宣布已获得哈佛大学技术发展办公室授予的独家技术许可,用于推进该技术的商业化,其目标是将电池缩小为手掌大小的“软包电池”,其组件封装在铝涂层薄膜中
微生物所发现真菌合成黄酮柚皮素的新途径
黄酮是一类主要由植物产生的多酚类化合物,在工业、食品和制药行业应用广泛。柚皮素作为一种平台化合物,是合成黄酮类化合物的关键步骤。在植物和细菌中,以对香豆酸(p-CA)为前体,经对香豆酰辅酶A连接酶(4CL)和III型聚酮合酶查尔酮合酶(CHS)催化生成柚皮素查尔酮,而后在查尔酮异构酶催化或pH改变自发异构化生成柚皮素。真菌中曾报道黄酮类化合物的产生,但其合成
先进电子显微技术在研究商用锂离子电池中的电荷转移和锂离子迁移机制方面的应用
2022年9月5日,天津理工大学在Nano Research Energy发表题为“Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy”的综述论
科学家报道“动而不聚”的原子级分散催化剂
10月26日,中国科学技术大学曾杰课题组、美国华盛顿州立大学Yong Wang课题组、美国加利福尼亚大学戴维斯分校Bruce C. Gates课题组和美国亚利桑那州立大学刘景月课题组合作,在《自然》(Nature)上,发表了题为Functional CeOxnanoglues for robust atomically dispersed catalysts
上海巴斯德所等开发出快速诊断猴痘病毒感染的新型检测方法
近期,中国科学院上海巴斯德研究所研究员Nicolas Berthet、王颂基等在viruses上发表了题为Development and Characterization of Recombinase-Based Isothermal Amplification Assays (RPA/RAA) for the Rapid Detection of Monk
热带病原体 qPCR
2022.10.27
青岛能源所等开发出拉曼介导靶向单细胞基因组技术
海洋是地球上最大的活跃碳库。海洋微生物在全球碳循环中具有重要作用,而由于大部分海洋微生物尚难以培养、原位代谢功能难以测量等技术瓶颈,关于海洋微生物光合固碳的原位功能机制等重要问题存在争议。中国科学院青岛生物能源与过程研究所与英国牛津大学、英国谢菲尔德大学、山东省海洋科学研究院等合作,基于CO2固定活性靶向性的拉曼分选耦合单细胞基因组(scRACS-Seq)等
苏州纳米所开发基于分级纳米结构的高效、耐久太阳能蒸发器
洁净水源短缺困扰着世界上超四分之一的人口,是引起传染病、贫穷等问题的根源。太阳能蒸汽发生器技术能在光照条件下直接产生洁净水源,为水源危机提供解决方法。科研人员通过提升太阳光吸收和光热转换效率、降低水的蒸发焓等手段,设计制造了一系列太阳能蒸发器以克服水蒸发过程中高能量消耗与弱自然光输入间的矛盾,而更高的能量利用效率仍需在热管理与水输运的平衡中去探寻。此外,盐水
科学家开发出精氨酸二甲基化蛋白质组分析新方法
近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化
研究人员开发出合理化深度学习超分辨显微成像方法
近年来,以深度学习为代表的计算超分辨方法可在不损失其他成像性能的前提下,提升显微图像分辨率或信噪比,表现出广阔的应用前景。然而,针对生物医学研究必需高保真度、可定量分析的图像要求,深度学习显微成像方法存在三大共性问题:受限于深度学习内秉的频谱频移(spectral-bias)问题,输出图像分辨率无法达到真值(ground truth)水平;受限于超分辨重建、
苏州纳米所利用分子拥挤策略调控溶剂化结构助力锂离子快速输运
随着便携式电子半岛bd体育手机客户端 与电动汽车等市场的迅猛发展,人们对可充电电池的能量密度、安全性能等指标提出了更高的要求。金属锂负极因其拥有极高理论比容量(3680mAh g-1)和较低的电极电势(-3.04V vs.标准氢电极)吸引了科研人员的注意。然而,金属锂负极在传统的碳酸酯电解液中存在着严重的枝晶与库伦效率低等问题,从而阻碍了锂金属电池的大规模应用。中国科学院苏州纳
四川大学新方法改性聚乳酸,发泡倍率高达49.2!
随着石油资源的不断消耗和环境问题日益引发广泛关注,聚乳酸成为最广泛研究的生物基和可生物降解的热塑性塑料之一。然而,聚乳酸分子量相对较低、分子链缠结较少,导致熔体强度较低,难以制备先进的生物基和可生物降解泡沫塑料以取代石油基聚合物泡沫塑料。四川大学杨鸣波教授课题组提出了一种新的提高聚乳酸熔体强度的方法,将商业聚乳酸在加工过程中通过简单的两步反应过程转化为PLA
新工艺可将聚乙烯裂解成丙烯
无处不在的塑料袋是出了名的难回收。即便被回收,也难以重新制造出高价值的东西。美国加州大学伯克利分校和劳伦斯·伯克利国家实验室开发出一项新工艺,使用催化剂将长聚乙烯(PE)聚合物分解成均匀的短链,即三碳分子丙烯,这是制造其他高价值塑料(如聚丙烯)的原料。相关论文发表在最新一期《科学》杂志上。聚乙烯塑料约占全球塑料市场的1/3,每年从化石燃料中生产超过1亿吨,其

124页,当前第6
1 2 3 4 5 6 7 8 9 10... 124
Baidu
map